Uncertainty Quantification via Spatial-Temporal Tweedie Model
for Zero-inflated and Long-tail Travel Demand Prediction
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* We integrate the Tweedie distribution to model demand, replacing the traditional two-
part zero-inflated model, thereby effectively capturing the zero-inflation and long-tail
non-zero characteristics of O-D travel data.

* The proposed combination 1s adept at quantitying the spatial-temporal uncertainty
inherent 1n sparse travel demand data.

* We validate the superiority of the STTD through experiments on two real-world travel
demand datasets, tested across various spatial-temporal resolutions and performance
metrics.
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Figure 1: Framework of STTD model.

1. We learn the three Tweedie parameters via STGNN Encoder;
2. We minimize the distribution loss and optimize the model parameters to better model
uncertainty.

»  We validated the performance of our model through
~ extensive experiments across five representative

»  scenarios, with a keen focus on point estimation and
» uncertainty measurement. Our results underscore
the model’s robustness and effectiveness, setting a

Figure 2: Surface plots for learned STTD parameters (¢, ¢, p) 18 (A%Y benChmark in the ﬁeld
on CDPSAMP10 (left) and SLDSAMP10 (right) test sets.




