Uncertainty Quantification via Spatial-Temporal Tweedie Model for Zero-inflated and Long-tail Travel Demand Prediction

Xinke Jiang* Peking University Beijing, China thinkerjiang@foxmail.com

Dingyi Zhuang* Massachusetts Institute of Technology Cambridge, Massachusetts, USA dingyi@mit.edu

Xianghui Zhang University College London London, United Kingdom xianghui.zhang.20@ucl.ac.uk

Hao Chen University of Chinese Academy of Sciences Beijing, China chenhao915@mails.ucas.ac.cn

Jiayuan Luo Chengdu University of Technology Chengdu, China joyingluo@foxmail.com

Xiaowei Gao[†] University College London London, United Kingdom xiaowei.gao.20@ucl.ac.uk

- We integrate the Tweedie distribution to model demand, replacing the traditional twopart zero-inflated model, thereby effectively capturing the zero-inflation and long-tail non-zero characteristics of O-D travel data.
- The proposed combination is adept at quantifying the spatial-temporal uncertainty inherent in sparse travel demand data.
- We validate the superiority of the STTD through experiments on two real-world travel demand datasets, tested across various spatial-temporal resolutions and performance metrics.

1. We learn the three Tweedie parameters via STGNN Encoder; 2. We minimize the distribution loss and optimize the model parameters to better model uncertainty.

CONCLUSION

Figure 2: Surface plots for learned STTD parameters (μ, ϕ, ρ) on CDPSAMP10 (left) and SLDSAMP10 (right) test sets.

We validated the performance of our model through extensive experiments across five representative scenarios, with a keen focus on point estimation and uncertainty measurement. Our results underscore the model's robustness and effectiveness, setting a new benchmark in the field.